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Abstract
The origin of cosmological magnetic fields is investigated in the context of a cyclical universe. Both the min-
imal and non-minimal coupling between electrodynamics and gravity are studied, applied to the phases
of bounce and contraction of an eternal universe. We report magnetic field creation from a small seed
electrical field both during bounce and contraction, being negligible in the first case but significant on the
latter. We show how the contraction of the universe can be responsible for generating magnetic fields with
strengths of the order of current bounds on extragalactic magnetic fields.
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1. INTRODUCTION
The study of the universe as a dynamical entity, comprising the observable reality that we can apprehend, began after physical
cosmological models were built. This was possible after not only the discovery of the expansion of the universe [1, 2] but also
the formulation of general relativity by Albert Einstein [3, 4], based on the deformation that mass-energy imparts to the space-
time structure, which offers the most satisfactory description of gravity given the empirical evidences that sustain it. In order to
explain observations, within Einstein’s general relativity, the current standard cosmological model needs however to resort to the
postulation of dark components for which evidence has yet to be found [5]. To solve the problems of the ΛCDM model, great
efforts have been placed in modelling dark matter and dark energy, at the same time that research in modifications and extensions
to general relativity has been conduced [6]. It is in the fact that general relativity does not easily admit quantization that lies the
strongest hint of it being an incomplete theory. There are several frameworks that have been modifying it. At the same time,
several cosmological models beyond the standard ΛCDM have been explored. In particular, we bring the reader’s attention to
models of eternal universes, i.e. that undergo expansion, contraction, bounce and expansion again, which have been proposed
using different mechanisms [7, 8, 9, 10, 11, 12, 13]. On the practical side, the advantages of cyclical models lie in addressing not
only the current postulation of an initial singularity but also problematic features introduced by the Big Bang scenario that require
additional mechanism, e.g. inflation, to make it consistent.

It has been shown that modifying the Lagrangian by adding terms of higher order to the curvature is a possible way to ac-
count for quantum gravitational effects [14, 15]. This way of modifying gravity offers us the possibility to explore viable cyclical
cosmological models [16] and this work deals with magnetogenesis in the framework of such a cosmological model.

Magnetic fields in cosmology and astrophysics play several important roles, for example, in both large and small scale structure
formation [17, 18] and in the description of particle acceleration through the interstellar and intergalactic media [19]. Despite
observational difficulties, they have been detected at several different scales, from planetary to galactic cluster magnetic fields
[20, 21]. However, the question of how they were created remains unsatisfactorily answered in the ΛCDM model. In the accelerated
expansion low curvature regime that our universe is currently undergoing [22], it has not been possible to model the mechanism
for creation of cosmological magnetic fields without resorting to beyond standard model ingredients [23]. Phase transitions offer
an environment where out-of-equilibrium conditions could induce turbulent motion in the plasma and generate magnetic fields.
Despite that, recent particle experiments have shown that cosmological transitions rather than first or second-order were likely to
be cross-overs. Thus, the standard model does not easily accommodate magnetogenesis during cosmological transitions. From the
scenarios for magnetic field generation in the early universe, the epoch of inflation is the most favoured. However, in order for
the generated fields to be able to account for the current magnetic field strengths, the conformal invariance of the electromagnetic
action has to be broken during inflation. At the same time, the strong coupling problem and backreaction on the background
expansion have to be accounted for [24].

Tentative lower bounds on extragalactic magnetic fields suggest that these fields are remnant from primordial fields origi-
nated cosmologically rather than astrophysically. These have been obtained from the non-observation of the expected electromag-
netic cascade emission of distant blazars [25] and in general that yields a constraint for the strength of today’s magnetic field of
B0 & 10−12 T. A usual way to extend the standard model in inflationary magnetogenesis is based on the introduction of addi-
tional couplings, such as to a scalar field [26, 27, 28, 29, 30]. Several studies analysed non-minimal coupling between gravity and
electrodynamics as a possible origin for magnetic fields and this hypothesis has also been considered in the context of bouncing
cosmologies [31, 32, 33]. Bouncing models consider a finite scale factor minimum instead of a Big Bang singularity as the beginning
of an expanding universe.
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Our aim is to study magnetic field generation before inflation, in a non-singular bouncing universe, both using minimal and
non-minimal coupling. We first analyse what happens during the short time interval in which the universe bounces and later the
case of magnetogenesis during the era of contraction.

We present in § 2 the basics of the cosmological model that define the background geometry; in § 3 we present the electrody-
namic equations and derive them for the non-minimal case in curved space. In § 4 magnetic field generation during the bouncing
and contracting phases of the universe is presented. Concluding remarks to these results are found in § 5.

2. CYCLICAL COSMOLOGICAL MODEL
This work does not rely on a particular modification of gravity to make the cosmological bounce possible. The central assumption
of this model is that by the end of the expansion phase of the universe, all its structures must have been disrupted such that
the universe is in an empty state before the beginning of contraction. The fate of gravitationally bounded systems in models of
accelerated expanding universe dominated by a dark energy with an equation of state w < −1 is indeed to be destroyed. This
ensures that from one cycle to the next the entropy and density of the universe do not increase. Any specific modification that
allows for a bounce and prescribes a nearly-empty universe at the beginning of the contraction cycle will therefore be suitable for
the magnetogenesis mechanism here proposed.

Assuming the universe to be isotropic, we use spatially flat Friedmann-Lemaı̂tre-Robertson-Walker

ds2 = gµνdxµdxν = −dt2 + a2(t)
[
dx2 + dy2 + dz2

]
, (1)

where gµν is the metric tensor, t is the time coordinate and a(t) is the scale factor. The Ricci scalar takes the usual form

R = 6Ḣ + 12H2 ; H ≡ ȧ(t)
a(t)

, (2)

where H is the Hubble parameter and dotted variables represent the derivative with respect to time.
The general geometric conditions that our model must meet to analyse cyclical magnetic field generation will be presented

next.

2.1. Bouncing Conditions
Prior to the currently observed expansion, a cyclic universe would have bounced from a contracting into an expanding state. The
scale factor decreases during contraction until it reaches a minimum amin at a time that we define as t(amin) = 0 and subsequently
increases. We assume a symmetric bounce around the minimum, beginning at a time t = −tB and ending at t = tB. This minimum
replaces the initial Big Bang singularity. As a consequence, the Hubble parameter grows from negative to positive, Ḣ(t) > 0. This
implies that the Ricci scalar needs to have a positive maximum and, therefore, R̈(t) < 0. The curvature scalar admits an expansion
in time during the bounce since its timescale is quite short in comparison to the timescales of cosmological processes. Keeping the
even powers of the expansion, that yields

R(t) = Rmax + R2t2 +O(t3) , (3)

with Rmax > 0 and R2 < 0.

2.2. Contraction Conditions
The phase of contraction begins after expansion halts and when there is a turnaround in the moment when the scale factor reaches
a finite maximum t(amax) = tmax. It then decreases until contraction ends when higher order corrections to the curvature become
significant and induce a minimum of the scale factor, t(amin) = tmin, causing the bounce.

It is important for a viable eternal non-singular cosmology that at the end of the expansion phase the universe can be effectively
considered empty. Only if contraction begins after the universe’s structures have been ripped apart and matter and energy densities
diluted enough to be negligible will the bounce at the end of the contraction phase occur in the same conditions as in the previous
cycle. This ensures that as cycles go by, entropy and densities do not grow exponentially but remain finite. This is crucial to
avoid problems present in contracting matter dominated universes, such as a significant increase in entropy and the Belinsky-
Khalatnikov-Lifshitz instability [37].

Through Friedmann’s equation, we can compute the Hubble parameter

H2 =
κ

3
(ρ + ρeff) , (4)

where κ is Einstein’s gravitational constant, ρ is the average energy density of the universe and ρe f f describes the effect of higher
curvature terms as an effective energy density. We can see here that no particular theoretical assumption is made about the model
that could modify the Friedmann equations in order to enable the bounce and turnover into contraction. We simply consider
that the effects of quantum gravity can be modelled by introducing a new effective contribution to the Friedmann equation, ρe f f ,
which has an arbitrary time dependence. In fact, it is known that many proposed modifications, including various models of
modified gravity, have an effect that can be expressed in this form. The term that includes ρe f f then must be consistent with
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the previously discussed conditions that H(t) must fulfil in order to obtain a turnaround. Specifically, we know that the Hubble
parameter vanishes at the points amax and amin, and that it should have a negative sign in between. In the regime when the universe
begins to contract, these properties can be easily encapsulated with a simple test-function, obtained through an expansion in time
of the form

ρe f f (t) = b0 + b1
t− tmax

tmin − tmax
+ b2

(
t− tmax

tmin − tmax

)2
+O(t3) . (5)

Setting, for the sake of symmetry, b0 = 0 and through the condition that b1 = −b2 for ρeff > 0, we obtain only one free adjustable
parameter.

The approximation ρ = p = 0, with p the average pressure of the universe, follows from the empty state of the universe at
the beginning of the contraction regime. Eq. (4), and consequently the scale factor, will have analytical solutions in this case. We
have also checked the numerical solution in case the energy densities of matter and radiation evolve in time according to ρ(t) =
ρmat(t) + ρrad(t) = ρ0

mat/a(t)3 + ρ0
rad/a(t)4, with ρ0

mat and ρ0
rad the values of the matter and radiation densities at the beginning

of the contraction phase. For these initial ρ0
mat and ρ0

rad to be consistent with the assumption of a nearly empty universe at the
beginning of the contraction phase, their values will be small enough such that throughout contraction the analytical approximation
provides a very good description.

3. ELECTRODYNAMICS IN CURVED SPACE
A possible way to prescribe the electromagnetic field such that its evolution be easily traceable is to assume independent time and
space evolution for the fields, e.g.

Ex = φ(t)E(y, z) , Ey = φ(t)E(x, z) , Ez = φ(t)E(x, y) , (1)

Bx = ψ(t)B(y, z) , By = ψ(t)B(x, z) , Bz = ψ(t)B(x, y) , (2)

where φ(t) and ψ(t) are functions of time, Ei and Bi the cartesian coordinates of the electric and magnetic field, respectively.

3.1. Non-minimal Electrodynamics
Using quantum electrodynamics, effects of vacuum polarization in curved space-time were shown to cause the minimal Einstein-
Maxwell Lagrangian to be modified [34]. With this motivation in mind, several authors have studied magnetogenesis in the context
of non-minimal coupling. In Ref. [35] it is applied to inflationary magnetogenesis and in Ref. [33] to bouncing magnetogenesis.
At the cost of increasing complexity, several couplings that generate unexpected effects can be at play, for instance between the
electromagnetic sector and the Ricci scalar, the Ricci tensor and the Riemann tensor, such as shown in Ref. [36]. We chose to modify
the Lagrangian in the simplest way possible, adding a term that couples the Ricci scalar and the electromagnetic tensor Fµν through
a coupling constant ε

Lnm = −1
4

FµνFµν − ε

4
RFµνFµν . (3)

Varying the action Snm =
∫

d4x
√−gLnm, where g is the determinant of the metric tensor, with respect to the induction ten-

sor [36]

Hµν ≡ Fµν +
ε

2
(gµρgνσ − gµσgνρ)RFρσ (4)

= (1 + εR)Fµν , (5)

one obtains the electrodynamic equation
∇ν Hµν = 0 . (6)

Let us now compute the covariant derivative of the induction tensorr [36]

∇ν Hµν = ∂ν Hµν + Γµ
νλ Hλν + Γν

νλ Hµλ (7)

= ε(∂νR)Fµν + (1 + εR)
(

∂νFµν + Γµ
νλFλν + Γν

νλFµλ
)

, (8)

where Γλ
µν is the Christoffel symbol.

Upon computation, Eq. (8) explicitly yields the following set of equations

−(1 + εR)
(
∂xEx + ∂yEy + ∂zEz

)
= 0 (9)

εṘEx + (1 + εR)
[
∂tEx − ∂yBz + ∂zBy + 3HEx

]
= 0 (10)

εṘEy + (1 + εR)
[
∂tEy − ∂zBx + ∂xBz + 3HEy

]
= 0 (11)

εṘEz + (1 + εR)
[
∂tEz − ∂xBy + ∂yBx + 3HEz

]
= 0 (12)

where Ṙ = 6(Ḧ + 4HḢ).
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Eqs. (9)-(12) represent the modified Gauss’ law for the electrical field and Ampère’s law. The remaining two Maxwell equa-
tions are derived from the Hodge dual of the electromagnetic tensor ∗Fµν = εµναβFαβ/2. Using the respective conservation law,
∇ν
∗Fµν = 0, we obtain the following set of equations

∂xBx + ∂yBy + ∂zBz = 0 (13)

∂tBx = ∂zEy − ∂yEz − 3HBx (14)

∂tBy = ∂xEz − ∂zEx − 3HBy (15)

∂tBz = ∂yEx∂xEy − 3HBz . (16)

Compared to (9)-(12), note that Faraday’s and Gauss’ laws have now not been modified due to non-minimal coupling.
Inserting (1) and (2) in the Gauss’ law for the electric and magnetic fields, we obtain the following differential equations,

respectively

φ̇(t) +
(

εṘ(t)
1 + εR(t)

+ 3H(t)
)

φ(t) = wψ(t) , (17)

ψ̇(t) + 3H(t)ψ(t) = uφ(t) , (18)

with w and u constants of integration. This set of equations can be solved by using the conditions adequate to the contraction phase
and the Hubble parameter thereof. Just as the dual electromagnetic field can be obtained from mapping the components of the field
Ei → −Bi, so can it be used to obtain the constants

u =
∂mE(i, m)− ∂l E(i, l)

B(l, m)
, w =

∂l B(i, l)− ∂mE(i, m)

B(l, m)
, (19)

that relate to each other through w = −u.

3.2. Minimal Electrodynamics
It is simple to recover standard minimal electrodynamics by switching off the non-minimal coupling constant, i.e. setting ε = 0, in
the equations presented in the previous section. In this case the usual Langrangian

LEM = −1
4

FµνFµν , (20)

governs Maxwell-Einstein equations, obtained when ε = 0 in (9)-(12). The system to solve in order to obtain the time evolution of
fields is now simplified to

φ̇(t) + 3H(t)φ(t) = wψ(t) , (21)

ψ̇(t) + 3H(t)ψ(t) = uφ(t) . (22)

4. MAGNETIC FIELD GENERATION
Solving the time evolution of electrical and magnetic fields using (17), (18), (21) and (22) we can investigate in an approximated
manner if magnetogenesis could have taken place in an environment different than the expansion phase of the universe. For our
observational universe, that would correspond to a time preceding the early universe.

Our basic assumption is to begin from a vanishing magnetic field. In this case, independently of the setting, it is easily seen that
a necessary condition for the generation of magnetic fields is a small electrical field. If the strength of this seed electrical field is small
enough, it is plausible for it to have been generated by moving charged particles that created local non-vanishing electrical currents.
These could have been present, on the one hand during the bounce due to the high energy densities at the end of contraction and
on the other hand, before contraction, produced in the ripping process before contraction. Here we will arbitrarily take its strength
to be E = 3× 10−7 V/m. We have also chosen u = 1 without loss of generality.

Electric fields, even if present primordially, were fastly dissipated in the early universe due to the large electrical conductivity
of the hot plasma. Since this does not affect magnetic fields, the remnants of cosmologically produced magnetic fields possibly left
imprints that we can observationally probe nowadays. Although they depend on the coherence length of the field, for reference we
look for solutions that fulfil the lower limits suggested for extragalactic magnetic fields of B(t0) & 10−12 T at present [25]. Fields
decay with expansion according to B(t) ∝ a(t)−2. We can then estimate the strength of primordial fields if expansion were the only
decaying mechanism at play. Since from the Planck scale it is estimated that the scale factor increased 1032 times until today, the
strength of magnetic fields at the Planck scale needed to have been around 1044 T. Being this the smallest scale that our current
approaches can sustain, this estimate can be used as an approximation to the necessary field strength after the bounce.

Both during bounce and contraction, the term in Eqs. (17)-(18) that stems from non-minimal coupling remains negligibly small
in all relevant solutions. For a non-minimal coupling as described by Eq. (3), this makes the non-minimal and minimal treatments
equivalent to our purposes. We will therefore show the results in terms of the minimal approach and the reader should be reminded
that the non-minimal solutions yield the same results.
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FIGURE 1: Scale factor and Hubble parameter during the bouncing phase of the universe.
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FIGURE 2: Magnetic and electrical field evolution during the bouncing phase of the universe.

4.1. Bouncing Phase
For simplicity (21)-(22) are cast in a dimensionless form by normalizing time to the bounce time tbounce, which remains as a free
parameter depending on the interval of time that the bounce takes, from −tbounce to tbounce, with t(amin) = 0. This in its turn de-
pends on details of the particular bouncing model, making this analysis suitable for multiple cases. In Eq. (3), we fit the parameters
Rmax and R2 to allow for maximal field growth, finding for the Hubble parameter and scale factor the curves shown in Figure 1.
The obtained electromagnetic field is shown in Figure 2. In this setting, it can be concluded that from a small seed electrical field a
magnetic field is induced, with maximal value at amin. The geometrical symmetry of the bounce period allows for fields to grow
as the scale factor diminishes, but similarly, to decay as the scale factor grows after the bounce takes place. The generated field
will be rather small thanks to the short duration of the bounce in which the scale factor varies in a rather small amount. Thus, the
geometrical properties that allow for magnetic field production are the same imposing a limitation on the primordial field strength.
Therefore, the obtained values of magnetic field at the end of the bounce period are greatly inferior to what would be necessary to
account for the lower bounds presently posed to extragalactic magnetic fields.

4.2. Contraction Phase
Eqs. (21)-(22) and respective parameters are now normalized using the time at which the scale factor is minimal, tmin. As can be
seen in Figures 3 and 4, the decrease of the scale factor during contraction is accompanied by an electromagnetic field growth. The
choice of parameters in Eq. (5), related to the magnitude of the Hubble parameter, has no influence in the shape of the curves φ(t)
and ψ(t), but it determines the strength of the generated magnetic field. We chose it such that it allowed for a field growth that
reproduces the presently expected extragalactic magnetic fields. We thus conclude that during contraction primordial magnetic
fields can be generated due to a seed electrical field. Unlike the case during the bounce, fields can suffer strong amplification in the
favourable conditions of the contraction phase. That easily allows for the production of fields with the magnitude expected that
primordial magnetic fields have in the early universe.

5. CONCLUSIONS
This work focused on studying the creation of magnetic fields in phases preceding the current cosmological cycle. Its main result is
that primordial magnetic fields of strengths sufficient to account for the observational present bounds can be accomplished during
the contracting phase of the universe.
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FIGURE 3: Scale factor and Hubble parameter during the contraction phase of the universe.
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FIGURE 4: Magnetic and electrical field evolution during the contraction phase of the universe.

We opted to follow an eternal cyclical cosmological model where standard gravitation is modified by introducing higher order
curvature corrections, such as described by Ref. [16]. In comparison to other magnetogenesis hypotheses in non-singular cosmolo-
gies, we do not resort to modifications of gravity that couple additional scalar or tensorial fields with the electromagnetic sector. In
comparison to inflationary magnetogenesis, the simple Maxwell-Einstein Lagrangian that we use does not break conformal invari-
ance. We do not have to solve the strong coupling problem and we are free from the backreaction of the field on the background
expansion, questions that arise in the context of inflationary scenarious.

During the bounce of the universe, from an initially vanishing magnetic field and a seed electrical field, a magnetic field is
generated. Its magnitude depends on the variation of the scale factor, which at the end of the bounce that corresponds to the
beginning of the expansion phase, is small in comparison to the fields expected to be present in the early universe in order to
derive the present-day bounds.

On the other hand, during contraction, as presented in § 4.2 we report the creation of magnetic fields of strengths of B(amin) ≈
1044 T. This field strength would decay during expansion until resulting in the present remnant cosmological magnetic fields. This
result can be easily generalized to yield different field strengths, according to the freedom in Eq. (5) of the parametrization of the
Hubble parameter evolution during contraction. The solutions are fairly stable with respect to the initial conditions. According to
our findings on the bounce region, an existing magnetic field at the end of the contraction phase is therefore likely to be mildly
amplified during the bounce. This serves also to guarantee that the magnetic field generated during contraction is not washed out
when curvature corrections become significant and induce the bounce. Thus it can survive to the expansionary phase. We have also
found that a simple coupling between curvature and the field tensor did not influence the results in comparison to the minimal
coupling.

The central assumption of our model consists in considering that at the beginning of a new cosmological cycle, when the
universe begins to contract, it is in an empty state. An accelerated expansion of the type that we are currently undergoing might
lead to such scenario. It also enables vacuum electrodynamics to be a good framework for our treatment.

The proposed mechanism counts on the presence of a non-vanishing seed electrical current that could be locally created during
the contraction phase of the universe, which would be sufficient to trigger the creation of a magnetic field. This small seed magnetic
field would quite simply suffer amplification following the geometrical properties of contraction. As the scale factor decreases, the
generated magnetic field gets stronger. The field strength that can result at the beginning of the expansion phase depends on
particular details of the description of the phase of contraction. This model is therefore flexible enough to encompass several
beyond standard model possibilities in the light of cyclical cosmologies. Despite its generality, it offers predictive power regarding
the long unsettled topic of magnetic field generation that we expect to soon be further probed by upcoming observations.
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